
1. Introduction
Sea level rise has increased the frequency, severity, and duration of coastal flooding in the past few decades (Ezer 
& Atkinson, 2014; Moftakhari et al., 2015; Sweet et al., 2014; Wdowinski et al., 2016). These changes can impact 
coastal communities through groundwater inundation (Rotzoll & Fletcher,  2013), beach erosion (Anderson 
et al., 2015) and storm-drain backflow and damage to the infrastructure (Habel et al., 2020). Coastal flooding 
frequency, due both to accelerated sea level rise (Nerem et al., 2018; Sallenger et al., 2012) and increasing sea 
level variability under climate change (Widlansky et al., 2020), is projected to steadily increase (Dahl et al., 2017; 
Kriebel et al., 2015; Kruel, 2016; Thompson et al., 2021; Wdowinski et al., 2016) and double by 2050 (Vitousek 
et al., 2017). This increasing risk to coastal infrastructure necessitates more accurate and reliable prediction of 
high-water level events months and seasons in advance.

Previous studies have demonstrated that dynamical seasonal forecasting systems can forecast sea level variations 
in the open ocean and at some coastal locations (Long et al., 2021; McIntosh et al., 2015; Miles et al., 2014; 
Widlansky et al., 2017), but in general coastal prediction remains challenging. First, by definition, the coasts 
are the numerical boundary of the ocean model, requiring special treatment in numerical integration. Second, 
the current generation of forecast systems has spatial resolution too coarse to fully resolve the topography and 
fine-scale dynamics near the coasts. This issue could be addressed with much finer grid spacing in global forecast 
models, but the resulting computational burden and model output storage requirements would be considerable, 
especially given the need for multiple ensemble members.

Alternatively, using downscaling techniques (Castro et al., 2005; Heyen et al., 1996; Pielke Sr & Wilby, 2012; 
Sithara et al., 2022), regional forecast output with higher resolution than the original coarse-grained forecasts 
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climate prediction systems produce coastal sea level forecasts spaced about 100 km apart. This is too coarse 
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can be obtained either dynamically, through regional numerical models with higher resolution but more limited 
domain, or statistically, through statistical relationships between coarse-grained and fine-scale data. Dynamical 
downscaling can potentially benefit from the regional model's better resolved dynamics and topography (M. 
A. Alexander et  al.,  2020; Shin & Alexander,  2020), but still requires substantial computational and storage 
resources. Statistical downscaling, on the other hand, usually provides comparable results without lengthy numer-
ical integration and often benchmarks the evaluation of dynamic downscaling (Goubanova et al., 2011).

This study aims to develop high-resolution forecasts of coastal sea level anomalies from existing seasonal forecast 
products, using simple regression-based statistical downscaling whose results can serve to benchmark the future 
development of more advanced downscaling methods. This paper is organized as follows. Section 2 introduces 
the observational and reanalysis data and model hindcast data set used in this study. Section 3 describes the details 
of the regression-based downscaling procedure. The validation of the downscaling technique and the determinis-
tic skill of the downscaled hindcasts are presented in Section 4. Section 5 includes the conclusion.

2. Data Description
In our analysis, we use monthly observations of sea level from coastal tide gauges, sea surface height (SSH) fields 
from reanalysis, and coupled climate model hindcast products.

2.1. Tide Gauge Observation

Six tide gauge stations (black dots in Figure 1: San Diego, San Francisco, South Beach, Virginia Key, Charleston 
and Atlantic City) are chosen to represent a variety of coastal locations in the United States. Tide gauge observa-
tions usually have long time coverage and are fairly consistent with other observations including satellite altim-
etry (Long et al., 2021).

2.2. GLORYS Reanalysis

GLORYS Ocean Reanalysis Version 12v1 (hereafter GLORYS; Jean-Michel et al., 2021) is a global eddy-resolving 
ocean and sea ice reanalysis, made by the Copernicus Marine Environment Monitoring Service, providing 
monthly ocean fields in 1/12° horizontal resolution, covering the period from 1993 to present. The reanalysis 
system assimilates along-track satellite derived sea level anomalies, satellite derived sea surface temperature, 
and in situ temperature and salinity vertical profiles, but not tide gauge data. However, extensive comparison 
shows that tide gauge observations are highly correlated with GLORYS SSH output along the U.S. coast (Amaya 
et al., 2022, and Figure S1 in Supporting Information S1), more than other reanalysis products (not shown).

2.3. Hindcasts

We downscaled hindcasts from six current generation seasonal forecast systems (Table S1 in Supporting Infor-
mation S1), from different operational centers, using models with different resolution, assimilation, and param-
eterization schemes (Kirtman et al., 2014; Merryfield et al., 2013; Saha et al., 2014; Wedd et al., 2022; Zhang 
et al., 2007). SSH hindcast ensembles from each model, initialized in each month from 1982 to 2011 with lead 
times up to 12 months, were used in this study. We defined the lead-1 month as the same month during which the 
model forecast is initialized. For example, if the forecast was initialized on January 1st, then the monthly averaged 
forecast for January was the lead-1 month forecast (in some other studies this is called lead-0 or lead-0.5 month), 
February was the lead-2 month forecast, and so on. We removed the mean bias from the hindcasts, defined as the 
initialization month and lead-time dependent climatology determined separately for each model, as is common 
practice for seasonal forecasts initialized with full field variables (Smith et al., 2013; Vannitsem et al., 2018).

3. Statistical Downscaling
We determined the downscaling relationship by relating an observational fine-scale data set to a coarse-grained 
version of itself, which is then applied to the bias-corrected hindcasts to yield downscaled hindcasts. In such 
analyses, the predictor domain could differ from the predictand domain (Goubanova et al., 2011); the former 
is usually larger than the latter to capture large-scale variations. For the predictor, we used coarse-grained SSH 
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anomalies determined by regridding the GLORYS reanalysis onto the climate model hindcast resolution (1° × 1°) 
using an areal conservative method, allowing the downscaling operator derived from the observational data sets 
to be directly applied to the hindcasts. For the predictand, we used GLORYS SSH anomalies on their original 
grid. Anomalies were defined as departures from the monthly climatology for the years 1993–2018.

3.1. Predictor and Predictand Domains

To identify a relevant geographic domain for the predictor, the coarse-grained SSH anomalies were regressed 
onto each of the tide gauge observed sea level anomalies (Figure 1). For the West Coast (Figures 1a–1c), coastal 
sea level variability is tightly confined to a narrow region along the coastline, dominated by coastally trapped 
Kelvin Waves (Allen, 1975) whose source can be traced back to the Tropics (Meyers et al., 1998). The sea level 
variability at San Diego (Figure 1a) is associated more strongly with coastal SSH signals and less with the open 
basin SSH pattern, as opposed to farther up the coast in South Beach (Figure 1c) where the dependence on 
coastal signals becomes weaker. Hence, to capture the large-scale pattern associated with coastal variability for 
all three representative tide gauges, the predictor domain for the West Coast was chosen to be all ocean points 
between 20°N–70°N and 150°W–110°W. ENSO is dynamically linked to West Coast variability, so there are also 
high regression values in the Tropics (not shown). However, including the ENSO region in the predictor domain 
turned out to be redundant since that information (e.g., the ENSO forced response) is already implicitly in the 

Figure 1. Regression maps of sea surface height anomalies from coarsened GLORYS reanalysis (1 × 1 grid spacing) onto each tide gauge observed sea level 
anomalies. The unit is centimeters. The name of each tide gauge is shown on the top of each panel. The black dots indicate the locations of the tide gauges. The blue 
lines in panels a and d indicate the predictand domains used in the downscaling multiple linear regressions.
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mid-latitude domain we used. Using smaller predictor domains (e.g., extending only 10° of longitude from the 
coast) also yielded no improvement.

The dynamics of coastal variability for the East Coast are different from those of the West Coast. Along the South-
east U.S. Coast (Figures 1d and 1e), sea level variability is associated with the western boundary current (i.e., the 
Gulf Stream) and its extension. The weakly positive regression along the Gulf of Mexico indicates that part of the 
signal is from coastally trapped waves propagating from the southeast U.S. coast to the Gulf of Mexico (Calafat 
et al., 2018; Ezer, 2016; Pasquet et al., 2013). In contrast, sea level variability near the Northeast Coast (Figure 1f) 
appears mostly influenced by local processes (Little et al., 2019; Piecuch et al., 2018; Wang et al., 2022). The 
predictor domain for the East Coast was therefore bounded between 20°N–50°N and 90°W–60°W.

The West Coast predictand domain was set to be the area within 200 km of the coastline and within the larger 
predictor domain, while for the East Coast we adopt the Southeast and Northeast U.S. Continental Shelf Large 
Marine Ecosystem regions (L. M. Alexander, 1993). For the East Coast, extending the predictand domain to 
include the region from 35°N to 40°N and 75°W to 70°W, where high regression values (Figure 1c) correspond 
with the Gulf Stream Extension, slightly degraded Atlantic City skill and had little impact elsewhere.

3.2. Downscaling Procedure

Key to statistical downscaling is finding a statistical relationship between the predictors and the predictands of 
interest (e.g., Goubanova et al., 2011, and many references therein). Multiple linear regression (MLR) was used 
to determine the statistical relationship between the coarse-grained and fine-scale SSH anomalies, which were 
further truncated via EOF analysis to minimize the sampling uncertainty and thus reduce the effective degree of 
freedom (i.e., dimensionality) due to limited observational records. Here we used predictor/predictand truncation 
of 34/10 EOFs (77%/71% of the variance in each domain) for the West Coast, and 40/5 EOFs (80%/81%) for the 
East Coast, respectively. These truncations were chosen via consecutive 10-fold cross-validation, where 90% of 
the data was used to determine the operator, which was then used to downscale the remaining 10%; this process 
was cycled through 10 times for all possible permutations of predictor/predictand truncation pairs (see details in 
Text S1 and Figure S2 in Supporting Information S1).

Then, the MLR downscaling relationship becomes:

𝐲𝐲 = 𝐁𝐁𝐁𝐁 + 𝜖𝜖 (1)

where x and y are vectors representing the principal component time series of predictor and predictand, respec-
tively, B is the multivariate regression coefficient matrix (i.e., downscaling operator) and ϵ is the regression error. 
The MLR is performed between two spatially varying fields to account for spatial heterogeneity, and conse-
quently B has nonzero off-diagonal elements. Once B is determined by minimizing the regression error, we use 
it to produce Ym, the downscaled hindcast in geographical space:

𝐘𝐘𝐦𝐦 = Φ𝐁𝐁Ψ⊺𝐗𝐗𝐦𝐦 

where Xm is the model hindcast in geographical space, and Φ and Ψ are the EOFs of X and Y, respectively.

Some previous studies (Klaver et al., 2020; Soufflet et al., 2016) have suggested that the effective resolution of 
climate models can be larger than their nominal grid spacing, so we also tested additional grid point smoothing 
of both the coarse-grained predictors and the climate model hindcasts prior to computing EOFs. However, trans-
forming into a truncated EOF space also acts as a spatial filter by efficiently capturing the resolved larger scales 
both in the predictor field and model output, and we found additional spatial pre-smoothing to be unnecessary.

We also tested whether our results depended upon the resolution of the GLORYS data set rather than its quality, 
by first smoothing the GLORYS data to match other coarser reanalyses' resolution and then using that as the 
“fine-scale” predictand, but this yielded poorer results.

3.3. Testing Downscaling Against Interpolation

Our statistical downscaling assumes that some fine-scale spatial coastal structures may have a large-scale compo-
nent, and does not simply reflect local structures. Therefore, we hypothesize that downscaling is superior to 
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filling in finer grids with an interpolation technique using the information of nearby grid points only. To test 
whether this hypothesis is true, we compared our downscaled hindcasts to an interpolated hindcast data set, 
constructed by filling the grid points on continents (i.e., extrapolation) by solving a Poisson's equation on a coarse 
1° × 1° grid and then using bilinear interpolation to find the values on the GLORYS grid. To solve the Poisson 
equation, we treated the ocean grids as boundary conditions and solved the continental grids by integrating the 
Laplacian operator, which usually generates a smoother field than other filling methods.

4. Results
4.1. Regression Validation

We first show how well downscaling reproduced the observed fine-scale coastal SSH anomalies. Figure 2 shows 
that the downscaled SSH anomalies are generally an excellent match to the original GLORYS data within the 
West Coast domain (Figure 2a), with correlation between the two sets of anomalies mostly above 0.9, apart from 
areas away from the coast, especially regions with strong mesoscale eddy activity around 40°N (Stammer, 1997). 
Downscaled SSH anomalies are also highly correlated with GLORYS in the East Coast domain (Figure 2b). 
However, correlations are higher along the Southeast than the Northeast continental shelf, suggesting that the sea 
level variability in the former is associated with large-scale SSH variations while the latter is more influenced by 
local processes, consistent with the regression maps in Figure 1. Overall, the downscaling operator captured the 
relationship between observed coarse-grained and fine-scale SSH anomalies with reasonable accuracy for both 
coastal regions, despite their differing dynamics.

4.2. Forecast Skill

The patterns of skill of both downscaled and interpolated multi-model ensemble mean hindcasts are generally 
similar (Figures 3a and 3b). For the West Coast, skill maximized along the southwest coast, which could be 
attributed to coastally trapped Kelvin Waves. Low skill is found offshore around 40°N and in the Gulf of Alaska. 
Downscaling generally improved upon interpolated forecast skill, significantly so along the midlatitude coasts 
and in the Gulf of Alaska region (Figure 3c; see Supporting Information S1 for the method used to test signifi-
cance). An SVD analysis of the downscaling operator (Figures S3 and S5 in Supporting Information S1) shows 
that this improvement is primarily due to one single-signed coarse-grained pattern along the coast that is ampli-
fied by the downscaling. While overall skill is notably lower on the East Coast, downscaling still improved skill 
there in a few areas, notably along the Northeast continental shelf and in a Southeast continental shelf region away 
from the coastline. Again, much of this improvement is dominated by one single-signed coastal pattern (Figures 
S4–S5 in Supporting Information S1). The effectiveness of the statistical downscaling method varies across the 
models (Figures S6–S11 in Supporting Information  S1), with much more downscaling improvement for the 
CanCM3 and CanCM4 than the other models (see Long et al., 2021 for a skill analysis of the original hindcasts).

Figure 4 shows how downscaling improves the skill of hindcasts verified against tide gauge observations. Since 
tide gauge data were not assimilated into GLORYS, they provide an independent verification of our technique. 
For San Diego and San Francisco, downscaled hindcast skill is significantly improved compared to interpolated 
hindcast skill for almost all lead times. At lead-7 month, downscaling improves skill from 0.52 to 0.58 and 0.50 
to 0.54 for these two stations respectively, which account for 22% and 20% of more variance explained. There 
is no significant improvement for South Beach except at lead-8 month. For the three stations on the East Coast 
(Figures 4d–4f), downscaled forecasts are significantly more skillful than interpolated forecasts for most lead 
times, with lead-7 improving from 0.12 to 0.21, 0.22 to 0.28, and 0.49 to 0.58 for Virginia Key, Charleston, and 
Atlantic City respectively. These improvements increase the variance explained from 1.4%, 4.8%, and 24% to 
4.4%, 7.8%, and 33.6% respectively. The downscaled hindcasts also have reduced error magnitude than the inter-
polated hindcasts (Figure S12 in Supporting Information S1).

Long et al. (2021) noted that the model SSH hindcasts do not capture the observed trend in the Atlantic basin, 
largely due to their poor SSH initialization, which can have a pronounced impact on their coastal SSH skill. 
In contrast, the GLORYS data set does capture the trend, so therefore the downscaling operator could as well 
(Figures S3–S4 in Supporting Information S1). However, we found that detrending the GLORYS data did not 
notably change the downscaling operator (Figures S15–16 in Supporting Information S1) and therefore did not 
impact downscaled skill (Figures S13–14 in Supporting Information S1), that downscaling captures a structural 
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relationship between large and fine scales that is not due to the trend. As expected, removing the linear trend in 
both the hindcast and tide gauge data sets also had very little impact on West Coast skill (Figure 4 and Figure S13 
in Supporting Information S1). However, for the east coast tide gauges, downscaling primarily enhanced the local 
skill of the linear trend component (the single-signed coastal pattern in Figure S4 in Supporting Information S1). 
In fact, for the linearly detrended hindcasts, downscaling does not significantly improve east coast skill compared 
to simple interpolation (Figure S13 in Supporting Information S1).

SSH forecast skill has strong seasonality (Long et al., 2021) that typically depends on the verification month (Shin 
& Newman, 2021). Figure 5 shows the skill for each target month and lead time for San Diego and Charleston 
(other stations are in Figure S17 in  Supporting Information  S1). San Diego has higher skill for hindcasts 

Figure 2. Temporal correlation coefficients between the sea surface height (SSH) anomalies from GLORYS and the 
regression predicted SSH anomalies for (a) West Coast and (b) East Coast.



Geophysical Research Letters

LONG ET AL.

10.1029/2022GL100271

7 of 11

Figure 3. Hindcast skill (measured by anomaly correlation) for lead-7 month of (a, d) the downscaled hindcast and (b, e) the 
interpolated hindcast, verified against sea surface height anomaly from GLORYS reanalysis; (c, f) are the skill differences 
between downscaled and interpolated hindcasts; the hatching indicates where these differences are not statistically significant 
at 0.1 level.
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verifying during the cold season, particularly October through February, consistent with a predictable signal 
due to ENSO-forced coastally trapped Kelvin Waves (Amaya et al., 2022). West coast sea level variability is also 
smaller in warm than in cold months. The skill of interpolated forecasts has similar seasonality. However, the 
seasonality of the skill is different than that of the skill difference. For example, statistical downscaling improves 
San Diego hindcast skill during both October–December and April–June. San Francisco and South Beach show 
similar seasonality of skill and skill difference as San Diego. In contrast, higher East Coast skill is found for 
hindcasts verifying during late summer and early autumn, for both downscaling and interpolation, which is also 
when the most significant downscaling skill improvement is found (Figure 5 and Figure S17 in Supporting Infor-
mation S1). Note also that the downscaling leads to minimal skill improvement, or even minor skill degradation, 
during some winter months for most of the stations examined here.

5. Conclusion
In this study, we demonstrated that a downscaling operator, obtained by regressing fine-scale SSH anomalies onto 
coarse-grained SSH anomalies determined from a high-resolution reanalysis, can be applied to model forecasts to 
generate high-resolution seasonal forecasts of U.S. coastal SSH anomalies. We showed that our statistical down-
scaling technique significantly improved the hindcast skill of SSH anomalies for the U.S. coasts compared to 
bilinearly interpolated hindcasts. Specifically, when comparing the downscaled hindcasts to the selected six tide 
gauge observations, we found that the downscaled hindcasts improved skill for five stations at most lead  times. 
This suggests that downscaling does capture some predictable fine-scale variations that are directly driven by 
predictable large-scale variations, which cannot be obtained by interpolation alone. Whether these improvements 
depended more on the resolution or on the quality of the GLORYS reanalysis data set used to construct the down-
scaling operators remains to be determined.

Figure 4. Hindcast skill (measured by anomaly correlation) of the downscaled (red) and interpolated (blue) hindcasts, verified against the tide gauge observations. 
The solid lines are the anomaly correlation of the respective ensemble mean of six models, and the shading indicates the skill range of all six models. The red circles 
indicate that the difference of skill between downscaled and interpolated hindcasts is statistically significant at that lead time at the 0.1 level.
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We did not aim to “correct” the hindcasts for model error, apart from removing the mean bias. That is, when the 
reanalysis-derived downscaling operator is applied to the model hindcasts it is assumed that the model space is 
largely similar to that of the reanalysis. Of course, models do not reproduce observed variability and their hind-
casts may evolve in a different state space than nature (e.g., Ding et al., 2018), which may be why some model 
hindcasts are more improved than others by the downscaling. Applying a downscaling relationship determined 
entirely from observations to coarse-grained forecasts might therefore provide less high-resolution skill than a 
downscaling trained on the forecasts themselves, in which case it may also be useful to include other variables in 
the downscaling procedure, providing a focus for future work.

Data Availability Statement
The data used in this study are available from the following sources: tide gauge observations (https://psl.noaa.
gov/data/tidal/), GLORYS reanalysis (https://datastore.cls.fr/catalogues/eu-copernicus-marine-service-global-re-
analysis-glorys/) and retrospective forecasts (https://downloads.psl.noaa.gov/Projects/NMME/).

Figure 5. Hindcast skill (measured by anomaly correlation) of the ensemble mean of downscaled (left column) and interpolated (middle column) hindcasts, verified 
against the tide gauge observations at San Diego and Charleston, for each lead time and target month; the right column shows the skill differences between downscaled 
and interpolated hindcasts (downscaling minus interpolation). The black dots indicate the correlation or correlation difference is not statistically significant at that lead 
time and target month at the 0.1 level.

https://psl.noaa.gov/data/tidal/
https://psl.noaa.gov/data/tidal/
https://datastore.cls.fr/catalogues/eu-copernicus-marine-service-global-reanalysis-glorys/
https://datastore.cls.fr/catalogues/eu-copernicus-marine-service-global-reanalysis-glorys/
https://downloads.psl.noaa.gov/Projects/NMME/
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